Board of Intermediate & Secondary Education, Mirpur AJK Physics Model Question Paper, Part-II Section-A(Marks 17)

Time Allowed: 25Minutes

Q.1 Fill the relevant bubble for each part. Each part carries one mark.


i	The force between two charges is 28 N. If paraffin wax of relative permittivity 2.8 is											
	introduced between charges as medium, then the force reduces to;											
	a)	25N	0	b)	20N	0	c)	15N	0	d)	10N	0
ii	A ru	bber ball of	radius 2cı	m ha	s charge of 5	μΟ	on it	s surface, wh	ich is	unif	ormly	
	distr	ibuted, the v	alue of E	at it	s center is;							
	a)	10N C ⁻¹	0	b)	Zero	0	c)	2.5N C ⁻¹	0	d)	5×10 ⁻⁶ N C ⁻¹	0
iii	Kirc	hoff's first l	aw is bas	ed uj	on the law	of co	nser	vation of;				
	a)	Current	0	b)	Charge	0	c)	Voltage	0	d)	Energy	0
iv	The	maximum p	ower deli	vere	d to a load re	sisto	r R,	when the int	ernal	resis	tance of the	
	sour	ce is;										
	a)	$r = \infty$	0	b)	r = R	0	c)	r = Zero	0	d)	r = R/4	0
v	Whe	en the angle l	between a	area	and magnetic	c fiel	d lin	es is 0°, then	magr	netic	flux will be;	
<u> </u>	a)	Maximum	0	b)	Minimum	0	(c)	Half	0	(b	Quarter	0
vi	The	torque actin	g on a co	il is 1	minimum , v	vhen	vect	or area of the	coil	is;		
vii	a)	Parallel to B	O b)	Pe	rpendicular to	$\mathbf{B} \circ$	(c)	Antiparallel to	$\mathbf{B} \circ $	d)	None of these	0
VII	II a	charge is at i	rest in ma	gnet		the		on the char	ge is;			
	a)	Zero	0	b)	$\mathbf{q}(\vec{v} \times \vec{B})$	0	(c)	$qvBSin\theta$	0	d)	qvBCosθ	0
viii		power dissip	pation in	L-C								
	a)	VI	0	b)	V_0I_0	0	(c)	$V_{rms}I_{rms}$	0	d)	Zero	0
xiv	The	reactance of	f an induc	tor a	t 50 Hz is 10	Ω.	The	reactance at	100 H	z be	come;	
	a)	20 \(\Omega\)	0	(b)	5Ω	0	(c)	2.5Ω	0	d)	0.5 Ω	0
X	Αw	rire is stretch	ed to dou	ble o	of its length,	its s	train	is;				
	a)	2	0	b)	1	0	c)	Zero	0	(d)	0.5	0
xi	Max	kimum stress	which a	bod	y bears is cal	lled i	ts;					
	a) [Jltimate Tens	ile stress) b)	Permanent :	stress	o c	e) Elastic str	ess O	d)	None of the	se O
xii	A h	ole in a p-typ										
xiii		An excess electro			missing electron	0	c)	A missing posi	tron O	d)	An excited ele	ctron
XIII		tial frames o										
xiv	a) /	Zero accelerat	$\frac{1}{1000}$	nito	m acceleration	on ^O	c) 2	Zero external:	force ^O	d) Both a) and	l b) O
XIV	Acc	Dueste or	-Broglie	equa	tion, which	on h	as th	e smallest w	aveler	ngth	associated w	ith it;
	a)	Proton	O	b)	Neutron	0	(c)	Electron	0	(d)		
XV		radius of fir				n is;						
		0.53 m	0	b)	0.53 nm	0	(c)		0	d)	0.53 mm	0
xvi	The	resulting nu	cleus in t	he r	eaction $\frac{1}{0}n+\frac{1}{2}$	$^{137}_{56}B$	$a \rightarrow$? + Y				
	a)	$^{138}_{56}Ba$	0	(b)	¹³⁸ ₅₅ Ba	0	c)	138La	0	ď) 136Ba	0
xvii	Hali	f life of Iodii	ne -137 is	8 d	ays and its v	veigl	nt is	20 mg, after	four 1	nalf l	ives the amo	
	Half life of Iodine -137 is 8 days and its weight is 20 mg, after four half lives the amount left undecayed will be;											
		2.50 mg	0	b)	6.25 mg	0	c)	0.625 mg	0	4) 0.312 ma	~ ^
							1 7	, ,	_	ı u	i + 0.012 Mt	\mathbf{r}

Board of Intermediate & Secondary Education, Mirpur AJK Physics Model Question Paper, Part-II Section-B (Marks 42)

Q.2 Attempt any FOURTEEN parts. All parts carry equal marks.

 Describe the relationship between potential difference and electric potential energy. Also give the difference between units volts and electron-volts.

- ii. Under what circumstances, can the potential difference of a battery exceeds its emf? Under what conditions both of these give same value.
- iii. How e/m ration of an electron can be determined using velocity selector method?
- iv. A galvanometer have a resistance of 100Ω , and gives full scale deflection on 1 mA current. How it can be converted into an ammeter of range 0-10A.
- v. State Faraday's law of electromagnetic induction. Give its mathematical form.
- vi. Show that the relation $\varepsilon = \frac{\nabla \emptyset}{\nabla t}$ is dimensionally correct.
- vii. Explain the difference between inductive reactance and capacitive reactance.
- viii. Why a choke cannot control the direct current? Explain.
 - ix. The rms value of current in an A.C circuit is 10A. What is the peak value of current?
 - x. Explain the difference among Young's, Shear and Bulk Modulus.
- xi. A semiconductor acts like insulator at 0K. Can conductivity of semiconductor be raised? If yes, then explain the process.
- xii. Why the base current is weak as compared to collector current?
- xiii. An n-type semiconductor has large no. of free electrons but still it is electrically neutral. Why?
- xiv. State the postulates of special theory of relativity.
- xv. Describe the phenomenon of pair production.
- xvi. Find the wavelength associated with an electron in the state n=4 of hydrogen.
- xvii. Calculate the shortest wavelength of the Balmer Series.
- xviii. With the help of equations, explain the difference between mass defect and binding energy.
- xix. Mass of ¹⁴N nucleus is 13.999234u. Calculate binding energy.
- xx. Find current in each loop of the given circuit.

Section - C (Marks 26)

Note: Attempt any **TWO** questions. All questions carry equal marks. $(2 \times 13 = 26)$

- Q.3 a. Define Capacitance of a Capacitor and its units. Derive an expression for Capacitance of a parallel plate Capacitor. Also derive a relation for the energy stored in a Capacitor.
 - b. Why transistor is called current amplifying device? Explain. (3)
 - c. A cable has a length of 12 m and is stretched by 1.2 ×10⁻⁴ m when a stress of 8.0 ×10⁸ N m⁻² is applied. What is the strain energy per unit volume in the cable when the stress is applied?
- Q.4 a. What are transformers? Describe the working principle, construction and working of a transformer. Discuss the use and energy losses in transformers. (6)
 - b. A charged particle moves in a straight line through a particular region of space. Could there be a non-zero magnetic field in this region. (3)

	c.	Calculate the shortest and longest wavelength of radiation for Paschen Seri	ies.					
	.		(4)					
Q.5	a.	Explain the construction and working of nuclear Reactor. Also discuss						
		Nuclear Reactors.	(6)					

b.

What determine the gradient of the graph of inductive reactance against frequency? Explain. (3)

c. A 12 volt automobile battery has resistance of 0.012Ω. What is the terminal voltage of this battery the starter draws a current of 100A? Calculate R, R_E, P_R, and P_r. (4)
