Version No.				ROLL NUMBER					CR	WERMEDIATE AND SET		
0	0	0	0		0	0	0	0	0	0	0	EDUCATOR E
1	1	1	1		1	1	1	1	1	1	1	13LAMABAD
2	2	2	2		2	2	2	2	2	2	2	
3	3	3	3		3	3	3	3	3	3	3	Answer Sheet No
4	4	4	4		4	4	4	4	4	4	4	
(5)	(5)	(5)	(5)		(5)	(5)	(5)	(5)	(5)	(5)	(5)	Sign. of Candidate
6	6	6	6		6	6	6	6	6	6	6	
$\overline{\mathcal{O}}$	7	7	7		$\overline{\mathcal{O}}$	7	7	7	7	7	7	
8	8	8	8		8	8	8	8	8	8	8	Sign. of Invigilator
9	9	9	9		9	9	9	9	9	9	9	
CHEMISTRY HSSC–I SECTION – A (Marks 17) Time allowed: 25 Minutes												

Section – A is compulsory. All parts of this section are to be answered on this page and handed over to the Centre Superintendent. Deleting/overwriting is not allowed. **Do not use lead pencil.**

Q.1 Fill the relevant bubble for each part. Each part carries one mark.

- 1. Plasma is the mixture of:
 - A. Electrons and protons only.
 - B. Electrons and positive ions.
 - C. Electrons and beta two particles.
 - D. Neutrons and protons.
- 2. The electrode potential of metals are: $Mg^{2+} + 2e^{-} \longrightarrow Mg$ $E^{\circ} = -2.71 \text{ v}$ $Ag \longrightarrow Ag^{+} + 1e^{-}$ $E^{\circ} = -0.8 \text{ v}$ Cell potential (emf) of the cell formed by these two will be: A. +3.51 v B. -3.51 vC. +1.91 v D. -1.91 v
- 3. At constant Pressure what will be the change in temperature when the volume of a gas will become twice of what it is at 0° C? A 546°C B 200°C

C. 546 K D.	273 K

- 4. Rate equation for a reaction $2A \longrightarrow \text{product}$ is Rate = K [A]². Unit of specific rate constant for this reaction is: A. mol²dm⁻⁶ S⁻¹ B. mol⁻¹dm³ S⁻¹ C. moldm⁻³ D. S⁻¹
- 5. A substance which itself is not a catalyst but increases the activity of a catalyst is called:

A.	Enzyme	В.	inhibitor
----	--------	----	-----------

C. Promoter D. Poisoner

6	Diam	and is a had conductor of alact	rigity h	000000					
0.		It has a tight structure	B	It has a high density					
	C.	It has no free electrons	D.	It is transparent to light					
7	Minter								
7. INTRUIP containing 0.01 mole/300cm ² of NH4C1 and 0.1 mole/400cm ² having $pKb = 5$ has pH of									
	A	$4\ 00$	В	4 12					
	C.	9.88	D.	10.00					
8.	5g of	urea (M.wt = 60) is dissolved is	in 250 c	cm ³ of its solution. Concentration of					
	A	5 % w/w	В	5 % v/w					
	C.	0.34 M	D.	0.34m					
9.	The ga combi What	aseous element X exists in dia nes with two volume of hydro is the formula of hydride of X	tomic for gen to f	orm. One volume of the element X form two volume of gaseous hydride.					
	A. C		B. D						
	C.	Π2Λ	D.	HX					
10.	The n	umber of bonds in one molecu	le of Ni	itrogen is:					
	A.	one σ and one π	В.	one σ and two π					
	C.	three σ only	D.	two σ and one π					
11.	Splitti	ng of spectral lines by placing	the exc	cited atom in electric field is called:					
	A.	Zeeman effect	B.	Stark effect					
	C.	Photoelectric effect	D.	Compton effect					
12.	2. In the ground state of an atom, the electron is present:								
	A.	in the valence shell	B.	in the second shell					
	C.	nearest to the nucleus	D.	farthest from the nucleus					
13.	3. Which one of the following exists in the solid state as a giant covalent lattice?								
	A.	ice	B.	iodine					
	C.	silicon (IV) oxide	D.	dry ice					
14.	pH of	1×10^{-4} M solution of Phosph	noric ac	id is:					
	A.	1.10	B.	2.02					
	C.	3.52	D.	4.13					
15.	In whi	ich substance does nitrogen ex	hibit th	e highest oxidation state?					
	A.	NO	B.	N ₂ O					
	C.	N_2O_4	D.	NaNO ₂					
16.	The heat of neutralization of the given reaction is -57.3 kJ NaOH + HCl \longrightarrow NaCl + H ₂ O								
	What is the heat of neutralization of the following reaction?								
	Fe(OF	$H_{2} + 2HCl \longrightarrow Fec$	$Cl_2 + 2$	H ₂ O					
	A.	-57.3kJ	B.	-114.6kJ					
	C.	-228KJ	D.	-28.0KJ					
17.	Which	n of these samples of gas conta	ins the	same number of atoms as 1g of					
	hydro	gen molecule? (At. Mass $C =$	= 12, C	0 = 16, H = 1, Ne = 20)					
	A.	22 g of CO_2	B.	8 g of CH ₄					
	C.	20 g of Ne	D.	8 g of O ₃					

Federal Board HSSC-I Examination Chemistry Model Question Paper (Curriculum 2006)

Time allowed: 2.35 hours

Total Marks: 68

Note: Answer all parts from Section 'B' and all questions from Section 'C' on the **E-sheet**. Write your answers on the allotted/given spaces.

SECTION – B (Marks 42)

- **Q.2** Attempt all parts from the following. All parts carry equal marks. $(14 \times 3 = 42)$
 - i. The bond angles of H_2O and NH_3 are not 109.5° as that of CH_4 . Although O and N atoms are Sp^3 hybridized. Give reason. (1+2)

OR

Explain the origin of spectral lines of Lyman, Balmer and Paschen series in H-atom. (1+1+1)

ii. What is corrosion? Give two methods for protection of iron from corrosion. (1.5+1.5)

OR

How can sodium chloride and glucose be dissolved in water? What important forces exist between solute and solvent particles in these solutions?

iii. Calculate molality of aqueous solution of sulfuric acid from the following data.

(1+2)

Molar mass	Molarity	Density in g/Cm ³			
98	18	1.84			
OR					

Calculate the molecular mass of the solute by using $\Delta P/P^0 = X_2$?	(1+2)
--	-------

iv. Interpret why water and ethanol can mix easily in all proportions. (1+2) OR

How sigma (σ) bond is different from a pi(π) bond?

v. What are quantum numbers? Which Quantum number cannot be explained on the basis of Bohr's Atomic Model? (1+2)

OR

The melting and boiling points of hydrazine (N_2H_4) are much higher than those of ethane (C_2H_4) . Give reason. (3)

vi. Describe hybridization in acetylene (C_2H_2) molecule. Explain with the help of a diagram. (1.5+1.5)

OR

Explain Hexagonal close packing and Cubic close packing in metals. (1.5+1.5)

- vii. Derive the units for general gas constant 'R' in general gas equation. (1.5+1.5)a. When the pressure is in Nm⁻² and volume in m³.
 - b. When pressure is in atm and volume in dm^3 .

OR

Consider the Standard electrode potentials (1+1+1)Ag⁺/Ag = 0.7994V, Fe³⁺/Fe = 0.771V Write the half-cell reactions at each electrode. Also write feasibility of this reaction. viii. As both NF₃ and BF₃ are tetra atomic molecules but have different geometry. Explain each according to VSEPR theory. (1.5+1.5)

OR

Write Equilibrium constant expression and find its unit for the following reaction.

$$PCl_5 = PCl_3 + Cl_2 \qquad (1.5+1.5)$$

- ix. Benzene (C₆H₆) is an aromatic hydrocarbon which exists as a liquid at room temperature. Using the following standard enthalpy changes. Calculate the enthalpy change of formation of C₆H₆. (1.5+1.5) Heat of formation of CO₂ = -393 KJ / mol Heat of formation of H₂O = -286 KJ / mol Heat of combustion of C₆H₆ = -3268 KJ / mol **OR** Write an equation to show energy difference between two energy levels, also calculate ionization Energy of H-atom. (1+2)
- x. What is reverse osmosis? Give any one daily life application. (1+2) OR

What are buffer solutions? Name their types with examples. (1+2)

xi. Consider this graph and explain on the basis of Maxwell Boltzmann curve of kinetic energy the effect of temperature on rate of reaction.

(1+2)

State Dalton's law. Also write its two applications. (1+2)

xii. An aqueous solution of ammonium chloride is acidic and that of sodium acetate is basic in nature. Give reason with the help of equation. (1+2)

OR

Distinguish between heat capacity and specific heat capacity. (1.5+1.5)

xiii. Ionic Crystals are brittle in nature but metals are malleable in nature. Elaborate.

(1.5+1.5)

OR

Heats of solution got an important applications in treatment of injuries and wounds. Justify the statement with the help of exothermic and endothermic heats of solutions. (1.5+1.5)

xiv. Lattice energies of LiCl and KCl are 833 kJ/mol and 690 kJ/mol, respectively. Explain the difference in these energies? (1.5+1.5)

OR

Chemical kinetics is concerned with rates of chemical reactions and factors that affects the rates of chemical reactions. Consider the following steps of reactions: FeCl₃ (aq) + 2Kl (aq) \longrightarrow FeI₂ (aq) + 2KCl (aq) + Cl - (aq) (slow) 2KI(aq) + 2Cl - (aq) \longrightarrow 2KCl(aq) + I₂(S) (fast) Write the rate law and calculate the order for the above reactions. (2+1)

SECTION – C (Marks 26)

Note: Attempt all questions. Marks of each question are given within brackets.

Q.3 Derive the equation for the radius of nth orbit of hydrogen atom using Bohr's model. (2+5)

(3+2+2)

(4+2)

What are the factors that affects the bonding?

- i. AsCl₃
- ii. H₂O
- iii. BF₃
- Q.4 Solvay process is used to manufacture sodium carbonate. During this process ammonia is recovered by the following reaction. (3+3)
 - $2NH_4Cl + Ca(OH)_2 \longrightarrow CaCl_2 + 2H_2O + 2NH_3$
 - When 100 g of ammonium chloride and 150 g calcium hydroxide are used then
 - i. Calculate the mass in kg of ammonia produce during chemical reaction.
 - ii. Calculate the excess mass in gram of one of the reactants left unreacted.
 - (At. Mass N=14 H=1 Cl= 35.5 Ca=40)

OR

Phosgene (COCl₂) is a toxic gas. This gas is prepared by the reaction of carbon monoxide with chlorine.

 $CO(g) + Cl_2(g) \longrightarrow COCl_2(g)$

The following data were obtained for kinetic study of this reaction.

Experiment	Initial [CO]	Initial [Cl ₂]	Initial rate (moles $dm^{-3} s^{-1}$)
1	1.000	0.100	1.29×10^{-29}
2	0.100	0.100	1.30×10^{-30}
3	0.100	1.000	1.30×10^{-30}

- i. Use the above data and deduce the order of the reaction with respect to CO and Cl₂.
- ii. Write rate law/equation for this reaction.
- **Q.5** Consider the following reaction:

Q.6

- $N_2 + 3H_2 = 2NH_3$
- i. Derive expression of Kc for the above reaction
- ii. Calculate equilibrium concentration of N₂. The equilibrium concentration of H₂ and NH₃ are 1.0 moldm³ and 0.5 moldm⁻³ respectively. Kc of above reaction at 25° C is 1.85×10^{-3} . (3+3)

OR

Balance the following chemical equation in an acidic medium by showing all steps. $Cr^{3+} + BiO_3^{1-} \longrightarrow Cr_2O_7^{2-} + Bi^{3+}$

Explain Born Haber's cycle to calculate lattice energy and draw its cycle. (1x6=6) (4+3)

OR

Explain primary and secondary storage batteries? How can lead storage batteries produce electric current? (4+3)

* * * * *