Chemistry

PAPER : PART-I

MARKS: 68

TIME: 2:40 Hours

Model Paper (AJK Syllabus) INTERMEDIATE

(SUBJECTIVE PART) <u>SECTION - I</u>

2- Write short answers of any eight parts.

 $(2 \times 8 = 16)$

	write still t dissects of diff eight parts.	1-110-101			
i	How the competing reactions decrease the efficiency of a reaction?	li	Mg atom is twice heavier than that of carbon justify it.		
III	How molecular formula is related to empirical formula?	iv	What are Zeeman and Stark effects?		
v	What type of informations are obtained from principal quantum number?	vi	The positive rays are also called canal rays. Give reason.		
vii	How sigma and pi bonds are formed?	viii	What is "Resonance"? Give one example.		
ix	Dipole moment of CS ₂ is Zero but that of CO is 0.12 D. Give reason.		What is "Lechatelier's principle"?		
хi	Chemical equilibrium is dynamic in nature justify it.	xii	What qualitative information can you obtain from the magnitude of equilibrium constant?		

3- Write short answers of any eight parts.

 $(2 \times 8 = 16)$

i	Write Characteristics of plasma.	ii	What is Graham's Law of Diffusion? Give its mathematical expression.			
iii	Justify that the volume of given mass of a gas becomes theoretically zero at -273.16°C.	iv	What are Ion dipole interactions?			
v	Write four advantages of vacuum distillation process.	vi	What are crystallographic elements?			
vii	Amorphous solids like glass is also called super cooled liquid. Give reason.	viii	Differentiate homogeneous and heterogeneous catalysis giving one example of each.			
ix	A rate determining step is the slowest step, comment.	х	Why is the solution of ferric chloride acidic nature?			
xi	Write any four applications of buffers.	xii	Explain the term "leveling Effect".			

4- Write short answers of any six parts.

 $(2 \times 6 = 12)$

	write short answers of any six parts.		(=		
i	What is Molality of a solution? Give its formula.	ii	Justify that the sum of mole fractions of all the components is always equal to unity for any solution.		
III	What is the concept of ebullioscopy and cryoscopy constants?	iv	What are endothermic and exothermic reactions? Give one example of each.		
v	Heat of neutralization of a strong acid and strong base is -57.4 KJ mole ⁻¹ . Why?		Define chemical potential energy.		
vii	Define Corrosion with example.	viii	Calculate oxidation number of "Mn" in KMnO ₄ .		
ix	Lead accumulator is a rechargeable battery. Comment.				

SECTION - II

Note:- Attempt any three questions.

 $(8 \times 3 = 24)$

AOFE	: AL	tempt any time questions.			
	(a)	Explain Excess and Limiting reagents in detail.	(04)		
5	(b)	Describe some properties of gases (any four).	(04)		
	(a)	Define hybridization. Explain. Sp hybridization giving example of Ethyne (CH <u>=</u> CH).	(04)		
6	(b)	Describe following properties of crystalline solids. (i) Anisotropy (ii) Symmetry (iii) Isomorphism (iv) Polymorphism	(04)		
	(a)				
7	(b)	The equilibrium constant K_c for the ammonia synthesis is 6.02×10^2 dm ⁶ mol ⁻² at 500° C. What is K_p for this reaction at this temperature? $N_2 + 3H_2$ (g) (g) (g) (g)	(04)		
	(a)	Describe about the factors affecting the rate of a reaction (any four).			
8	(b)	Calculate Lattice energy of an ionic compound by Born Haber cycle.			
	(a)	Explain Beckmann's method for the measurement of depression of freezing point.	(04)		
9	(b)	Describe the construction and working of Galvanic cell.	(04)		
		(FL F. 1)			

(The End)

Chemistry (OBJECTIVE PART)

PART-I

Model Paper (AJK Syllabus) (INTERMEDIATE)

Chemistry

(INTERMEDIATE)

(PART – I) (OBJECTIVE PART)

Model Paper (AJK Syllabus)

Marks : 17 Time : 20

Minutes

Note:- Write your Roll No. in space provided. Over writing, cutting, using of lead pencil will result in loss of marks. All questions are to be attempted.

1	The molar mass of H ₂ SO ₄ is;							
	А	980g mole ⁻¹	В	98 g mole ⁻¹	С	98 a.m.u	D	198 a.m.u
2	The	largest number of i	molec	ules is present in:				
	Α	18 g of glucose	В	4 g of CH ₄	С	34.2 g of glucose	D	15 g of Na ₂ CO ₃
3	The	velocity of light 'C'	is equ	ual to:	-			
	A	3 x 10 ⁸ ms ⁻¹	В	300 x 10 ⁸ ms ⁻¹	С	6.579 x 10 ¹⁴ s ⁻¹	D	456 x 10 ⁻⁹ m
4	P ⁻³ ion has the valence shell electronic configuration as.							
	A	3S ² , 3P ⁶	В	3S ² , 3P ⁵	С	3S ² , 3P ³	D	3S ² , 3P ⁴
5	Which one of the following molecule has a distorted geometry?							
FIT	A	CH ₄	В	SF ₆	С		D	DE
						SF ₄		BF ₃
6	A molecule has two ion pairs and two bond pairs around the centralation it is expected to be:							
	A	V-shapes	В	Triangular	С	Linear	D	Tetrahedral
7		The pressure exerted by the molecules of non ideal gas at the walls of the vessel can be best calculate from:						
	А	Vander waal's equation	В	General gas equation	С	Graham's law of diffusion	D	All of these
8	The S.I unit of ideal gas constant 'R' is:							
	Α	8.314 JK ⁻¹ mole ⁻¹	В	1.987 CalK ⁻¹ mole ⁻¹	С	0.0821 L Jmole ⁻¹ K ⁻¹	D	82.1 atmdm ³ K ⁻¹ mole
9	The vapour pressure of Chloroform at 20°C is:							
	Α	87 Torr	В	580 Torr	С	18 Torr	D	170 Torr
10	All of the following substances are crystalline except.							
	Α	Carbon	В	Ice	С	Plastic	D	Sucrose
11	The reaction goes to forward direction when;							
	Α	$Q_c > K_c$	В	Q _c < K _c	С	$Q_c = K_c$	D	None of these
12	The pH of a 0.005M aqueous solution of H ₂ SO ₄ is;							
	Α	0.005	В	2	С	1	D	0.01
13	Hydrolysis of urea takes place in the presence of the enzyme.							
	A	Invertase	В	Hydrolase	С	Urease	D	Glucokinase
14	The number of moles of solute dissolved per dm³ of the solution called;							
	А	Molality	В	Mole fraction	С	Molarity	D	$\left(\frac{W}{W}\right)$ %
15	What are the enthalpies of all elements in their standard states?							
	A	Zero	В	Always negative	С	Unity	D	Always positive
16	The oxidation number of manganese in KMnO ₄ is;							
10	A	+3	В	+6	С	+7	D	-3
17	Oxidation number of oxygen as +2 is shown by which of the following compounds;							
L /								
	Α	Cl ₂ O	В	F ₂ O	C	Na ₂ O ₂	D	Na ₂ O

(The End)